> Common Core Geometry Proof - Triangles_1
> Measures of Interior Angles of a Triangle

Theorem: If a figure is a triangle, then the measures of the interior angles sum to 180°.
Given: \triangle MNO Diagram
Prove: $\mathrm{m} \angle \mathrm{NMO}+\mathrm{m} \angle \mathrm{MNO}+\mathrm{m} \angle \mathrm{NOM}=180^{\circ}$

Statements
1. $\triangle \mathrm{MNO}$
2. Construct $\overleftrightarrow{P Q}$ parallel to $\overline{M O}$ through N .

3. $\angle \mathrm{PNQ}$ is a straight angle and $\mathrm{m} \angle \mathrm{PNQ}=180^{\circ}$
4. $\mathrm{m} \angle \mathrm{PNM}+\mathrm{m} \angle \mathrm{MNO}+\mathrm{m} \angle \mathrm{QNO}=$ $\mathrm{m} \angle \mathrm{PNQ}$
5. $\mathrm{m} \angle \mathrm{PNM}+\mathrm{m} \angle \mathrm{MNO}+\mathrm{m} \angle \mathrm{QNO}=180^{\circ}$
6. $\angle \mathrm{PNM}$ and $\angle \mathrm{NMO}$ are alternate interior angles \& \angle QNO and $\angle \mathrm{NOM}$ are alternate interior angles
7. $\angle \mathrm{PNM} \cong \angle \mathrm{NMO} \& \angle \mathrm{QNO} \cong \angle \mathrm{NOM}$
8. $\mathrm{m} \angle \mathrm{PNM}=\mathrm{m} \angle \mathrm{NMO} \& \mathrm{~m} \angle \mathrm{QNO}=$ $\mathrm{m} \angle \mathrm{NOM}$
9. $\mathrm{m} \angle \mathrm{NMO}+\mathrm{m} \angle \mathrm{MNO}+\mathrm{m} \angle \mathrm{NOM}=180^{\circ}$

Reasons

1. Given
2. Postulate: Given a line and a point not on the line, one and only one line can be drawn through the given point that is parallel to the given line.
3. Definition of Straight Angle
4. Partition Postulate
5. Substitution Axiom
6. Definition of Alternate Interior Angles
7. Theorem: If parallel lines are cut by a transversal, then the alternate interior angles formed are congruent.
8. Definition of Congruent Angles
9. Substitution Axiom
