Common Core Geometry Proof – Triangles_3

Midsegment Theorem

Theorem: If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side and half the length.

Statements	Reasons
1. \overline{DE} where D is the midpoint of \overline{AC} and E	1. Given
is the midpoint of \overline{CB}	
2. Construct \overline{DF} where E is the midpoint,	2. Construction
and draw \overline{BF}	
3. $\overline{AD} \cong \overline{DC}$ and $\overline{BE} \cong \overline{EC}$	3. Definition of Midpoint
4. \angle CED and \angle BEF are vertical angles	4. Definition of Vertical Angles
5. $\angle CED \cong \angle BEF$	5. Theorem: If two angles are vertical angles, then they are congruent
6. $\triangle DCE \cong \triangle FBE$	6. SAS \cong SAS
7. $\overline{DC} \cong \overline{FB}$	 Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
8. $\overline{AD} \cong \overline{FB}$	8. Transitive Axiom
9. $\angle DCE \cong \angle FBE$	9. Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
10. ∠DCE and ∠FBE are alternate interior angles	10. Definition of Alternate Interior Angles
11. DA FB	11. Theorem: If alternate interior angles formed by lines cut by a transversal are congruent, then the lines cut by the transversal are parallel.
12. <u>DE</u> <u>AB</u>	12. Theorem: If a quadrilateral has two opposite sides parallel and congruent to each other, then the other two opposite

13. DE + EF = DF14. $\overline{DE} \cong \overline{EF}$ 15. DE = EF16. $\overline{AB} \cong \overline{DF}$ 17. AB = DF18. DE + EF = AB19. DE + DE = AB20. 2DE = AB21. $DE = \frac{1}{2}AB$ sides of the quadrilateral are parallel and congruent to each other.

- 13. Partition Postulate
- 14. Definition of Midpoint
- 15. Definition of Congruent
- 16. Theorem from line12
- 17. Definition of Congruent
- 18. Substitution Axiom
- 19. Substitution Axiom
- 20. Addition Axiom
- 21. Division Axiom