Common Core Geometry Proof – Parallelograms_5

Diagonals of a Rectangle

Theorem: If a parallelogram is a rectangle, then the diagonals are congruent.

Given: Rectangle MATH with diagonals \overline{MT} and \overline{HA}

Prove: $\overline{MT} \cong \overline{HA}$

	Statements	Reasons	
1.	Rectangle MATH with diagonals \overline{MT} and \overline{HA}	1. Given	
2.	∠HMA and ∠TAM are right angles	2. Definition of Rectangle (i.e. a rectangle is a parallelogram with fou right angles)	ır
3.	\angle HMA $\cong \angle$ TAM	3. Theorem: If two angles are right angles, then they are congruent.	
4.	$\overline{MH} \cong \overline{AT}$	4. Theorem: If a quadrilateral is a parallelogram, then the opposite side are congruent.	\$S
5.	$\overline{MA} \cong \overline{MA}$	5. Reflexive Axiom	
6.	\triangle HMA $\cong \triangle$ TAM	6. SAS \cong SAS	
7.	$\overline{MT} \cong \overline{HA}$	7. Corresponding Parts of Congruent Triangles are Congruent (CPCTC)	