Common Core Geometry Proof - Lines and Angles_2

Alternate Interior Angles

Theorem: If two parallel lines are cut by a transversal, then the alternate interior angles formed are congruent.

Given: $x \| y$ cut by transversal t
Diagram:

	Statements	
1. $\quad x \\| y$ cut by transversal t		
2. $\angle \mathrm{C}$ and $\angle \mathrm{d}$ form a linear pair		
3. $\angle \mathrm{C}$ and $\angle \mathrm{d}$ are supplementary		

4. $\mathrm{m} \angle \mathrm{c}+\mathrm{m} \angle \mathrm{d}=180^{\circ}$
5. $\angle \mathrm{d}$ and $\angle f$ are supplementary
6. $\mathrm{m} \angle \mathrm{d}+\mathrm{m} \angle f=180^{\circ}$
7. $\mathrm{m} \angle \mathrm{c}+\mathrm{m} \angle \mathrm{d}=\mathrm{m} \angle \mathrm{d}+\mathrm{m} \angle f$
8. $m \angle c=m \angle f$

Reasons

1. Given
2. Definition of Linear Pair
3. Theorem: If two angles form a linear pair, then they are supplementary.
4. Definition of Supplementary Angles
5. Same Side Interior Angles Postulate
6. Definition of Supplementary Angles
7. Substitution Axiom
8. Subtraction Axiom
9. $\angle \mathrm{C} \cong \angle \mathrm{f}$
10. Definition of Congruence
