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Across three years, more than 1000 students enrolled in courses that addressed proof in secondary 

geometry were tested at the beginning of the school year and after completing the proof unit(s). In 4 

of the 20 study teachers’ classrooms, students were introduced to proof through a set of 16 specially 

designed lesson plans that addressed particular sub-goals of proof; while students in the control group 

learned from the standard curriculum. The sub-goals comprise a pedagogical framework that 

decomposes the teaching of proof in geometry. Study findings suggest that the experimental treatment 

had a positive statistically significant effect on students’ achievement on the proof-focused post-test.  

INTRODUCTION AND THEORETICAL FRAMWORK 

In his review of the research on teaching proof in geometry, Battista (2007) posed the following 

questions: (a) Why do students have so much difficulty with geometric proof? (b) What components 

of proof are difficult for students and why? and (c) How can proof skills best be developed in students?  

(pp. 887-888). Ten years later, in an updated review of the research on teaching and learning proof in 

geometry, Sinclair, Cirillo, and deVilliers (2017) reported that since Battista’s review was published, 

although researchers had attempted to design studies to better understand and, in some cases, address 

the difficulties of teaching and learning proof in geometry, these studies tended to focus on only one 

or a few teachers or did not provide evidence of effectiveness on a large scale. Sinclair et al. (2017) 

recommended that more research was needed on students’ development of geometric proof skills and 

their understanding and beliefs about the nature of proof. This paper addresses the first component of 

this recommendation – research on the development of students’ geometric proof skills.  

In terms of students’ skill development, Smith (1940) identified and analyzed “three serious learning 

difficulties” that students have when learning proof in geometry: (1) a lack of familiarity with 

geometric figures; (2) not sensing the meaning of the if-then relationship; and (3) an inadequate 

understanding of the meaning of proof (p. 100). Thirty-five years later, Senk (1985) detailed findings 

from her study of 1520 students in the U.S., in which she found that only 30% of students in a full-

year geometry course that covered proof reached a 75% mastery level of proof writing. Consequently, 

she suggested that we must immediately look for more effective ways to teach proof in geometry. She 

suggested that teachers do the following: (1) pay special attention to teaching students to start a chain 

of reasoning; (2) place greater emphasis on the meaning of proof than we do currently; and (3) teach 

students how, why, and when they can transform a diagram in a proof (p. 455).    

Building on this earlier research as well as tasks proposed by Cirillo and Herbst (2011) and prior work 

conducted by Cirillo et al. (2017), Cirillo launched the Proof in Secondary Classrooms (PISC) Project 

in 2015. The PISC Project is a five-year study that takes as its premise that if we introduce proof by 
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first teaching students particular sub-goals of proof, then students will be more successful with 

constructing proofs on their own. The underlying theory of the pedagogical framework rests on 

Grossman and colleagues’ (2009) notion of “decomposition of practice” - the breaking down of a 

practice into its constituent parts. The ability to decompose a practice is dependent on naming the 

constituent parts so that instructors can provide targeted feedback on students’ efforts to enact 

particular components of practice. Although Grossman et al. (2009) considered decomposition in the 

context of teacher education, we argue here that the notion of decomposition can be applied not only 

to pedagogical practices but to mathematical processes as well (see Kobiela & Lehrer (2015) for a 

related example on the practice of defining). By decomposing complex practices, instructors can 

support learners first to attend to and then to enact the essential elements of a practice. In this vein, the 

research question posed here is: When provided with instruction based on a pedagogical framework 

that decomposes proof in geometry into particular sub-goals of proof, how do students’ scores on a 

set of proof tasks compare for students in the experimental and control groups? 

METHODS 

The control group received regular instruction which ranged from a conventional geometry course 

focused on Euclidean geometry to a collection of proof units spread out over several years of 

‘integrated math.” The experimental group received instruction based on the Geometry Proof Scaffold 

which we describe next. Data collection instruments for this aspect of the study included a pre-test and 

post-test. These instruments are described below.  

Intervention: The Geometry Proof Scaffold (GPS) and the PISC Curriculum 

The Geometry Proof Scaffold (GPS) was informed by the research literature and two related research 

projects described elsewhere by Cirillo and colleagues (see, e.g., 2008; 2017). Collectively, these 

studies provided evidence that when it comes to teaching proof in geometry: (a) the introduction to 

proof is particularly difficult for students and their teachers; (b) even experienced, “well-prepared” 

teachers may not feel confident in their strategies for introducing proof; and (c) curricula provide 

inadequate support for teaching proof in geometry. The GPS, a pedagogical framework organized 

around a set of nine sub-goals for teaching proof, was developed to address these and other well-

documented challenges described in the literature. It describes the competencies that students must 

understand and be able to do in order to be successful with proving. The GPS simplifies the task of 

proving so that understanding can be built in progressive steps toward the larger goal of doing proof 

(i.e., developing conjectures, proving theorems, etc.). See the full GPS in Figure 1.  

The Proof in Secondary Classrooms or PISC Curriculum is a set of 16 lesson plans and student activity 

sheets based on the ideas from the GPS. The goal of these lessons is to scaffold the introduction to 

proof by teaching particular competencies necessary for students to be able to write proofs on their 

own. In this sense, proof has been "decomposed," whereby students learn particular sub-goals of proof 

one at a time so that they are able to draw upon all of the competencies to participate in the reasoning 

and the discourse of proving. These lessons served as the intervention for the experimental group. A 

sample task for addressing the Coordinating Geometric Modalities sub-goal (i.e., translating notation 

into a diagram) is provided in Figure 2. A sample task for the Drawing Conclusions sub-goal (i.e., 

drawing a conclusion from a given statement and a definition) is provided in Figure 3.  
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Figure 1: Geometry Proof Scaffold: A Pedagogical Framework for Teaching Proof  

(© Michelle Cirillo, University of Delaware, USA) 
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Figure 2: A Sample Task for the Coordinating Geometric Modalities Sub-Goal 

 

Figure 3: A Sample Task for the Drawing Conclusions Sub-Goal 

Data Collection and Analysis  

Pre-tests and post-tests were administered to 1,550 and 1,278 students, respectively, for three years of 

the study. The pre-test was a 20-item multiple choice assessment developed by Usiskin and used for 

Usiskin’s and Senk’s studies in the 1980s (e.g., Usiskin, 1982; Senk, 1985). The pre-test is called the 

Entering Geometry Test (EGT). The post-test, called the Cognitive Development and Achievement in 

Secondary School Geometry (CDASSG), was developed by Senk (1985). The CDASSG is a 6-item 

assessment. The first task is a fill-in proof. The second task provides a mathematical statement (e.g., 

The diagonals of a rectangle are congruent) and then requires only a Figure, a Given Statement, and a 

Prove Statement, but no proof. The last four tasks are full proofs. There are three forms of the CDASSG 

assessment that were designed to be approximately equivalent in difficulty.  

Psychometric analyses of both instruments were carried out using classical true-score methods 

(Cronbach, 1951) and Item Response Theory (IRT; Lord, 1980). Descriptive item statistics were 

calculated, with percent correct used to quantify the difficulty of each item, while item-total 

correlations were used to confirm coherence of responses across items. Cronbach’s Alpha was used to 

estimate the reliability of total test scores. Additionally, a 3-parameter logistic IRT model was 

estimated to produce item parameters (i.e., difficulty, discrimination, and guessing parameters), as well 

as item characteristic curves, a total information curve, and conditional standard errors of measurement 

for both assessments. For the CDASSG assessment, which included partial credit items, the IRT model 

was extended to a 3-parameter graded response model. 

A total of 1,161 students completed both the pretest and posttest. Pearson’s correlation between pre-

test and post-test was calculated to confirm positive correlation between the two tests, and to serve as 

evidence of predictive validity. Approximately 1/6 of the sample was in the experimental group (n = 

212) while the remaining students (n = 949) were in classrooms that used the standard curriculum. The 
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students in the experimental group came from 4 of the 20 study teachers’ classrooms (i.e., 4 teachers 

received the treatment and 16 did not).  

Hierarchical Linear Modeling (HLM) was used to estimate impacts of the experimental curriculum. 

The HLM model is a random intercept analysis of covaraince (ANCOVA) model, with the following 

mathematical form. 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1(𝑋𝑖𝑗) + 𝛽2(𝐺𝑖𝑗) + 𝛽3(𝑇𝑗) + 𝛼𝑗 + 𝜀𝑖𝑗 

Where: 𝑌𝑖𝑗 is the post-test score for student i under teacher j 

 𝛽0 is the model intercept 

 𝛽1 is the regression coefficient for the pretest score, 𝑋𝑖𝑗 

 𝛽2 is the regression coefficient for an 8th Grade indicator (with 𝐺𝑖𝑗=1 for students in 8th 

grade;  𝐺𝑖𝑗 = 0 for students in 9th grade or above) 

 𝛽3 is the regression coefficient for the treatment effect (with 𝑇𝑗=1 for experimental 

classes;  𝑇𝑗 = 0 for non-experimental classes) 

 𝛼𝑗 is the random intercept for teacher 𝑗, distributed as 𝑁(0, 𝜏) 

 𝜀𝑖𝑗 is the residual term for student i under teacher 𝑗, distributed as 𝑁(0, 𝜎2) 

Use of an ANCOVA-type model allows comparison of post-test scores under experimental and 

standard curriculum, after controlling for any preexisting differences in students’ pretest scores on the 

Entering Geometry Test as well as differences associated with enrollment in an advanced mathematics 

class in 8th grade.  

RESULTS 

Classical psychometrics confirmed good reliability of both instruments, with Cronbach’s Alpha of .82 

for the Entering Geometry Test (EGT) and .86 on the CDASSG. The correlation between the pre-test 

(EGT) and post-test (CDASSG) is moderate to large (i.e., 0.67). Consequently, EGT scores can be 

used to predict CDASSG scores within ±20 Normal Curve Equivalent (NCE) points (i.e., 

approximately ±1 standard deviation). Figure 4 shows a scatterplot reflecting the relationship between 

pre-test and post-test scores. 

Results from the IRT models also confirmed good reliability and validity of both instruments. Nearly 

all items had appropriate IRT difficulty estimates (e.g., between -2 and +2), good discrimination (e.g., 

above .50), and low guessing parameters (e.g., below .30). Total information and conditional standard 

errors of measurement suggest that both instruments have good precision for all students in the sample 

except those with unusually low (e.g., >2SD below the mean) or unusually high performance (e.g., 

>2SD above the mean).  

The HLM models of treatment effect revealed a significant positive impact of the experimental 

curriculum. After controlling for grade level and pre-test (EGT) scores in a 2-level HLM with students 

nested within teachers, students in the treatment group scored 4.27 Normal Curve Equivalent points 
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higher (Effect Size = +.20 standard deviations) on the post-test (CDASSG; p<.01). A second analysis 

was run because research suggests that teachers need time to learn how to teach from, and to develop 

trust in, new curriculum programs (Drake & Sherin, 2009). After restricting the HLM analyses to Year 

2 (pre-implementation) and Year 4  (post-implementation) data, students in the treatment group scored 

6.61 NCE points higher (ES = +.31 standard deviations) on the post-test (p<.001). Thus, the exclusion 

of the second year of data confirmed that impacts were larger after the initial implementation year. 

Taken together, both analyses demonstrate that the gains made by students were significantly larger 

with the GPS-focused lessons than the standard curriculum programs. Figure 5 illustrates the 

differences in post-test scores after controlling for pre-test scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Scatterplot of pre-test and post-test scores (N = 1,161; r = .67) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Scatterplot for Treatment Impact Analysis (N = 1,161; ES = +.20SD) 
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DISCUSSION AND CONCLUSION 

We began this paper citing questions posed in Battista’s (2007) review of the teaching and learning of 

geometry, such as: “What components of proof are difficult for students and why?” and “How can 

proof skills best be developed in students?” The results reported here provide a general proof-of-

concept of an intervention for teaching proof in geometry. This intervention is based on the hypothesis 

that not only can pedagogical practices be decomposed, as put forth by Grossman et al. (2009), but so 

too can mathematical processes such as proving. While these results are promising, what is still unclear 

is which of the sub-goals and competencies included in the GPS-focused lessons are the true “high-

leverage” practices, whereby “high-leverage” practices are defined as a “set of practices that have the 

greatest impact on student learning” (Hlas & Hlas, 2012, p. 78; O’Flaherty & Beal, 2018). The 

classroom teachers who participated in the study seemed to believe that the lessons focused on 

Developing Geometric Modalities were of particular importance. Other teachers who participated in 

the previous study (see Cirillo et al., 2017) found the Drawing Conclusions tasks to be especially 

important. More work is needed to better understand which of the sub-goals and competencies of the 

GPS are truly “high-leverage” and under what conditions they must be developed so that students can 

successfully engage in proof in geometry. Of course, it is also possible that some important 

competencies are still missing from the framework.  

A limitation of this study is that we did not include item analyses, and our evidence is purely 

quantitative. Future work should explore achieved competencies as well as common student errors. A 

separate sub-study that made use of qualitative analyses, however, did explore competencies and 

behaviors observed when students solved two particular geometry proof tasks with smartpen 

technology. More specifically, Cirillo and Hummer (2021) found that students who were successful 

with the both proof tasks exhibited the following competencies: (a) they productively attended to the 

“Given” information; (b) they used the diagram as a resource; (c) they knew their warrants and 

explicitly identified them as postulates, axioms, definitions, or theorems; (d) they demonstrated that 

they were thinking in a logical manner, and (e) they attended to important details while working 

through their proofs (e.g., attending to common sub-arguments and the “Prove” statements). There are 

clear connections between these findings and the sub-goals and competencies in the GPS. For example, 

productively attending to the “Given” information is related to the Drawing Conclusions sub-goal, and 

using the diagram as a resource is related to the Working with Diagrams sub-goal. Also related, Cirillo 

and colleagues (in press) found that classes of students who did particularly well on the CDASSG 

assessment learned to prove theorems through a thoughtful routine that gave students opportunities to 

develop competencies from the Conjecturing, Understanding Theorems, and Understanding the Nature 

of Proof sub-goals. We conclude that a combination of qualitative and quantitative analyses will help 

us make further progress on Battista’s important questions.  
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